Instructor’s Notes	Relational Database Development	Database Design

Relational Database Development
(152-156)

Database Design

	Notes
	Activity

	
Database Design Goals -- Database that is:
· Adaptable
· Fields and tables can be added (removed) easily
· Flexible
· Data can be retrieved in an unlimited number of ways
· Accurate
· No data redundancy
· Validation on fields
· Default values
· Look ups

	

	Step 1 – Fact Finding
· Determine field (data storage) requirements
· Sources:
· Current users (owners)
· Existing databases
· Existing forms or other documents
· Don’t worry about grouping, simply list
· [bookmark: multivalue]Split multi-part fields into separate fields
· Example: Split Name into FirstName and LastName
· Example: Split Address into Street, City, State and Zip
· Example: Split Phone into AreaCode and Phone, maybe Extension

	Handout Student Enrollment field list

	Step 2 – Name Tables

· Browse through field list, list those tables that are obvious (others might (will) surface later)

	List tables for Enrollment Database

	· Table Naming Conventions
· Add the tbl prefix to each table name
· Name tables using either plural nouns or singular nouns. Don’t mix with in a database.
· E.g. tblCustomers, tblLocations, tblVehicles
· E.g. tblCustomer, tblLocation, tblVehicle
· Unique and descriptive
· 2012: Lean towards plural nouns
· Ensure abbreviations are clear to everyone, not just those involved in the project.
· Brief, but complete
· Use minimum words necessary
· Don’t include database terminology: Record, File, Table
· Don’t include adjectives that restrict data
· Example: Wisconsin Rapids Employees, Stevens Point Employees
· Results in duplicate structures. Structures (field lists) of both tables will be identical

	

	· Make a separate table for multi-value fields.
· Example: a field named Hobbies might contain “bowling, fishing”
· Create a separate Hobbies entity (each hobby will be listed as a separate record in this table)
· Multi-value fields are difficult to search and nearly impossible to validate or sort.
· Tip: if the field name is plural, it’s probably a multi-value field.

	

	Step 3 – Draw Entity Relationship Diagram1
M
Computer
Lab

· Entity Relationship Diagram (ERD) is picture that shows the relationships between tables of a database
· Helps discover additional tables and defines relationships
· Rectangle used to represent each table in a database
· Line drawn between tables that are directly related
· At end of each line, include cardinality
· One occurrence in table 1 is related to how many occurrences of table 2 (maximum number)
· One occurrence in table 2 is related to how many occurrences of table 1 (maximum number)
· For our purposes, the maximum is listed as 1 or many (M)

· The above ERD fragment expresses that:
· “One lab contains (M)any computers”
· “One computer exists in only one (1) lab”

	Draw ERD for Enrollment

	Step 4 – Determine Primary Key for each Entity
· The primary key is the field or fields whose value uniquely identifies a record in that table.
· For Lab above, it might be Room Number
· For Computer above, it might be ID Number
· Primary keys can be a combination of two keys
· For Lab above, if the building has multiple floors, a combination key might be Room Number plus Floor (e.g. Room 10 on Floor 5)
· If you need to combine 3 or more fields to create a unique primary key, consider creating an ID Number field for that table.
· These keys are usually autonumber fields
· Lately, I’ve been using these as the keys in almost all my tables.
· Primary key requirements:
· Unique. No two keys will have the same value
· Cannot be null. In multi-field keys, none can be null
· Values in field rarely (if ever) change
	Define keys for Enrollment database

	Step 5 – Resolve Many-to-Many Relationships
· Many-to-Many (M-M) are relationships where the cardinality is M (many) in both directions.
· The Lab-Computer example above is a 1-M (one-to-many) relationship. The following represents a M-M relationship
· “One customer orders many products.”Product
Customer
M
M

· “One product is purchased by many customers.”
· M-M relationships are nearly impossible to implement using a database program
· M-M relationships must be resolved into multiple 1-M relationships in order to implement the database
· Resolving M-M Relationships
· Insert a new entity between the two entities
· Name the new entity.
· ”What is one occurrence of table1 combined with one occurrence or table2 called?”
· ”One customer ordering one product is called…?
an ordered product.”
· Re-evaluate the cardinality of the new relationships
· Probably 1----M [] M----1
(Manys attached to new entity)
1
1
M
M
Ordered
Product
Customer
Product

· Determine the primary keys (always at least 2) for the new entity.
· Usually the keys from the two parents

Parent entities are those on the 1 side of a relationship (Customer and Product)

Child entities are those on the M side of a relationship (Ordered Product)

One entity can be the parent in one relationship and a child in a different relationship.

	Resolve M-M relationships in Enrollment.

	· Another factor you should consider when defining table relationships (and should probably discuss with owners/users) is what happens to child records when parent records are deleted.
· Restrict Delete
· Parent record cannot be deleted until all child records (in all child tables) have been deleted.
· Preferred technique. Requires consideration of affects of deleting this parent record.

· Cascade Delete
· When parent record is deleted, all associated child records (in all child tables) are automatically deleted.
· Dangerous

	

	Step 6 – Determine the Linking Fields (Foreign Keys)
· For every relationship, the primary key from the parent table must exist in the child table. This is what links the tables together in a relational database.
· Often, the links will already exist because of M-M resolution.
· If the parent’s primary key does not exist in the child, copy the field into the child table.
· This field DOES NOT become part of the child’s primary key.
· Designate the field as a link (L)

	Copy keys from Program and Instructor into child tables.

	Step 7 – Remove Calculated Fields and Constants
· Because today’s computers are so fast, it’s better to calculate these values as you need them instead of storing them in the database.
· Additionally, if you calculate them as you need them, you ensure the values are always up to date.
· Make a separate list of the calculated fields you removed. Include the equation used to calculate the value.
· Ensure all the parts of the equations are stored somewhere in the database.
· Equation parts can be stored in different tables (linking allows you to bring them together)
· If parts can be calculated, don’t store them either
· Constants are fields that ALWAYS store the same value
· No need to waste storage space
· Print the constant value on reports when needed

· There are exceptions to this rule. Values that rarely change, though calculated, may be fields in the database. I’ve never run into an instance of this though.

	Remove GPA from Student table

GPA = Total Points /
Total Credits
Total Points = Sum of all grade points
Total Credits = Sum of all credits earned

	Grade Points available (determined from letter grade)
· Credits Earned available

Remove State (constant)

Remove City, create ZipCity table to lookup city based on zip
Zip is linking field in Student

	Step 8 – Assign Remaining Fields to Entities
· For all remaining fields (from Step 1), assign to one and only one table.
· Only linking fields may be duplicated in a database.

	Assign fields to entities in Enrollment database.

	· Field Naming Standards
· Apply to primary keys and linking fields as well.
· Use singular nouns
· If plural makes more sense, this is not a field but another table (see multi-value fields above).
· Unique and descriptive
· Include table name when field name occurs in two tables (StudentAddress, InstructorAddress)
(optional)
· Use minimum number of words
· Use acronyms and abbreviations wisely (only if everyone understands them)
· If the name includes “/” “&” “-“ “and” “or”, it probably represents two or more fields. Split them.
· Split multipart fields into separate fields
· If a field can be decomposed into parts, it’s probably more than one field.
· Example: Address (street, city, state, zip)
	Phone (area code, number, extension)
	

	Step 9 – For all Fields, Determine Type (And Size)
· Use types and sizes available in your database program
· Types and sizes of linking fields must be identical in each table
· For Access:
· Short Text
· Most common type of field
· Determine appropriate maximum size for field (255 characters max)
· If you’re not sure, estimate on the low side
· Easier to expand a field than to remember to shrink
· Example: T20 (short text, 20 characters)

· Long Text (Memo)
· Text–type field that can store up to 65,000 characters
· Example: M

· Number
· Access has five different types of Numbers
· Select the appropriate type to use memory/storage effectively
· Byte (whole number, 0-255)
· Integer (whole number, ±32,767)
· Long Integer (whole number,
±2.1 billion)
· Single (number with decimals, 7 digits of accuracy after decimal point)
· Double (number with decimals, 15 digits of accuracy after decimal point)
RARELY USED!
· Example: B I L S or D

· Date/Time
· Stores a combination of date and time or any part thereof
· Example: D/T

	Assign types and sizes to all fields.

	· Currency
· Stores a dollar amount
· Usually better to use Single from above
· Example: $

	

	· Yes/No
· Stores a boolean value: yes/no, true/false
· Example: Y/N
· Hyperlink
· Stores a web address or email address
· Example: H

· OLE Object
· Stores, or links to, an image, sound clip or video clip

	

	· Designate the logical keys
· In tables that use autonumber fields, you should (with the user/owner’s help) determine which fields in the table should not allow duplicate values.
· The autonumber field will ensure the primary key will not have duplicate values
· [bookmark: _GoBack]If the primary key is NOT an autonumber field, it should always be designated as a logical key. Your program must ensure the field is not a duplicate to prevent the database from causing an error.
· But, there are usually other fields in the table that should not contain duplicates.
· In a movie database, you might include a autonumber primary key, but the database should not allow duplicate entries for movie title combined with release date
· Some tables may allow duplicate records but only with user permission.
· In a student table (with autonumber primary key), your GUI program might allow two (or more) students with the same first, middle, last name combination—but only with user permission.
· These types of tables are fairly rare. Most tables have logical keys that are never duplicated.

	

	· Logical Keys: Rules and Guidelines
· Every table has logical keys
· Autonumber fields are NEVER logical keys
· Primary keys that not autonumber are ALWAYS logical keys
· Linking table linking fields are always logical keys

· Think about all other fields, should duplicates be allowed? If no—logical key
· Look for combinations of fields. Should their concatenated values allow duplicates? If no-logical keys.

	

	Step 10 – Ensure No Redundancy Except for Linking Fields
· Check for synonyms, two fields with different names that are actually the same thing.
· Example: Social Security Number and Employee ID
· Double-check to ensure non-linking fields only occur in one entity

	

	· Field Formatting / Validation Considerations
· # designate digits required for text field
· Use a lookup for this field
· All linking fields should be lookups
· AutoCap: automatically capitalize the first letter of each word in the field
· Uppercase: Automatically capitalize all letters in the field
· n1 – n2 : numeric value range check
· Auto Populate from field
Automatically populate this field from another field in the database (credits earned = current credits).
· Not a lookup
· User not usually allowed to edit
· Required. This is a required field (not a big fan of this)
· Keys are automatically required
	

	Final Thoughts
· Database design is best done by a group of people unless you have significant experience.
· Don’t be afraid of undiscovered errors in your design
· When you build the database, errors will surface and you can correct them early
· When you populate the tables with data, other errors might surface. Again, you’ll usually catch these early on.
· If you follow these guidelines, your database will be adaptable, flexible and accurate. Any design errors you find after using the database for a while (lots of data entered) should still be relatively easy to correct, especially with Access’ help.
	

		11
image1.png

