Instructor’s Notes	Relational Database Development	Views, Indexes & Security

Relational Database Development
152-156

Views, Indexes & Security

	Notes
	Activity

	Quick Links & Text References
View Description	Pages	182 – 183
		187
Creating a View	Pages	183 – 187
Using a View	Pages	184+
Renaming View Fields	Pages	185+
Views Based on Joins	Pages	186 – 187
		189 – 192
Statistics Views	Pages	186 – 187
Deleting a View	Page	192

Index Concepts	Pages	196 – 198
Creating an Index	Page	199
Using an Index	Pages
Displaying Current Indexes	Pages
Deleting an Index	Page	200

Database Security	Pages	193+
GRANT Table Privileges	Pages	193+
GRANT Field Privileges	Page	194
Restricting Record Access	Pages
REVOKE Privileges	Page	195
Showing Privileges	Pages

	

	
[bookmark: viewdesc]View Description
A view is simplistically a saved query.
· You designate which fields, and which records are to be included in the view using a SELECT statement
· This is sometimes done for security reasons. By only allowing users to see the data in a view you restrict their access to the full table/database.
· Views can also be used as reporting tools.
· Views can also be used to treat fields from multiple tables as if they are all in one table.
· Finally, views can be used to simplify complex queries. The view filters out certain fields and records, or calculates statistics. The view’s results can then be used in another query.
Nothing is really saved except the description of what fields and records to include.
· Whenever the view is used, the data shown reflects the current contents of the table(s) used in the view.
The book describes a view as a window to the data in the table—a window that restricts the data that is available.

	

	[bookmark: createview]Creating a View
CREATE VIEW viewname AS
SELECT statement to select fields and records from another table
Executing this command creates a view—the results of the view are not shown.
In the MySQL Workbench, views appear in the Navigator under Views (logically enough) (below Tables)
· Might need to refresh to see newly created views

	Create a view vwColomaEmployees of all fields in tblemployees from plant 1

	[bookmark: usingview]Using a View
Use the view name where you would normally use a table name in any query
· SQL will combine the query that created the view with the query that uses the view.
CREATE VIEW vwCsBooks AS
SELECT * FROM tblbooks
WHERE bookType=’CS’

SELECT bookTitle, bookPrice
FROM vwCsBooks
		WHERE bookPrice > 25
		ORDER BY bookPrice DESC;
Behind the scenes, SQL would combine the SELECT clause of the CREATE VIEW command with the SELECT statement that uses that view to form the following SELECT statement:

SELECT bookTitle, bookPrice
FROM tblBooks
	WHERE bookPrice > 25
 AND bookType= ‘CS’
ORDER BY bookPrice DESC;

This combination occurs behind the scenes, the user never knows it’s happening.

	Display all records in view

Display all plant 1 union members

Discuss combined query what really occurs

	[bookmark: renamefields]Renaming Fields in a View
When you create a view, you can change the names of the fields included in the view

CREATE VIEW vwCsBooks (title, price, type) AS
SELECT bookTitle, bookPrice, bookType
FROM tblBooks
		WHERE bookType = ‘CS’;
Note the SELECT clause must use the original field name in the WHERE clause
When using statistics (aggregate) functions in the SELECT clause, you must specify a new name for every field in the view. You cannot rename the fields in the SELECT clause.

CREATE VIEW vwBookTotal (type, total) AS
SELECT bookType, SUM(bookPrice)
FROM tblBooks
			GROUP BY bookType;
Because the fields have been renamed for the view, you must use the new field names when using the view.

		SELECT title, price FROM vwCsBooks;
	Create a view of all February trips,

tripDate, city, days

Show February trips to Chicago sorted by date

	[bookmark: joinviews]Views Based on Joins
You can easily combine the fields (and rename them if you wish) from multiple tables to form a view.
· In the SELECT clause, join the tables.
· From the View user’s perspective, all the fields are now part of one virtual table.
When you create these views, you have to be very careful about allowing users to insert, update and delete records from a view.
· Views often do not contain all the fields from one table. If you INSERT a new record, what values should be inserted in the fields that are not part of the view?
· If you DELETE a record from a view based on a join, should the records from both tables be deleted?
· It’s usually much safer to only allow the user to look at, but not modify, the data in a view (see security discussion below). But, that may not always meet the project requirements. Think about the ramifications of modifying data in a view.

	Create a view of all employee information combined with all plant information for plant 1.

	[bookmark: statistics]Views Based on Statistics
Views can also be created that are based on queries that generate statistics (SUM, AVG, COUNT, etc)

CREATE VIEW vwBooksPerBranch (branch, totalInv) AS
SELECT branchName, SUM(unitsOnHand) FROM tblBranches
INNER JOIN tblInventory
USING (branchNumber)
			GROUP BY branchName;
This view will show the total number of books in each branch. This is a good example of a view used as a reporting tool. The view can be used as the basis of another query as well.
Views based on statistics NEVER have update, delete, or insert rights.
See Renaming Fields in a View above for renaming rules that apply to views with statistics

	Create view that displays the number of union and nonunion members at each plant.

Try some selects.

	[bookmark: delview]Deleting a View
DROP VIEW viewname
· Note, views cannot be replaced by running another CREATE VIEW command. You must drop the view before creating the new version.

	

	[bookmark: indexconcepts]Index Concepts
By default, database tables are sorted by primary key
· Especially in tables with autonumber fields, this is rarely useful
Indexes store pointers to the original records in a different sort order
· This makes displaying the records in that order quicker
· Also significantly improves searching
· Also improves joins (create index for foreign key)
· With today’s powerful computers, this speed benefit is only realized on large tables
Indexes can also be built on a combination of fields (similar to multi-field sorts)
	

	There are disadvantages to creating indexes
· Whenever data is added or changed, indexes need to be updated (takes time)
· Indexes take up additional storage space
· Have to balance the time lost adding/updating with the time gained when querying

	

	[bookmark: createindex]Creating an Index
CREATE INDEX idxName ON tblName (fldName1, fldName2 DESC);
Indexes can be created on one or more fields
· Fields must be designated NOT NULL
If appropriate, the field can be sorted in descending order
In MySQL Workbench, indexes are shown in the Navigator under the appropriate table
[image:]
	Create an index for tblemployees based on lastname, firstname.

	Indexes can also be created when you define the table
CREATE TABLE tblName
	field lists
INDEX(field1, field2);

	

	[bookmark: useindex]Using an Index
Indexes are automatically used whenever your query includes a WHERE clause that includes the index fields in the same order they are specified in the index or when your query includes an ORDER BY clause that includes the index fields in the same order they are specified in the index.

	Select lastname, firstname from employees. Note: sorted.

Select just last. Just first (not sorted)

	[bookmark: displayindex]Displaying Current Indexes
SHOW INDEXES FROM tblName;

	Try it

	[bookmark: delindex]Deleting an Index
[bookmark: _GoBack]DROP INDEX idxName ON tblName;

	

	[bookmark: security]Database Security
SQL databases provide two levels of security.
· Views provide some level of security by restricting what data a user can see.
· The GRANT and REVOKE commands provide varying levels of access to tables
The types of privileges that are available in SQL vary depending on the implementation. MySQL allows you to control the following privileges:
· Select
· Insert
· Update
· Delete
· Create
· Drop
· Grant
· References
· Index
· Alter

	Because we are using a portable version of MySQL with only one user, these commands cannot be demonstrated.

	[bookmark: grant]GRANT privileges ON tblName TO usernames;
· privileges can include many privileges, separated by commas
· username can include many users, separated by commas
· Only one tablename may be specified in a GRANT statement (despite what the book says)
· usernames can also be the keyword PUBLIC, granting rights to everyone
· privileges can also be the keyword ALL, granting all rights to the specified user, EXCEPT the Grant privilege.

	

	[bookmark: grantfield]GRANT SELECT (fieldlist) ON tablename TO usernames;
GRANT UPDATE (fieldlist) ON tablename TO usernames;
· When granting SELECT or UPDATE privileges, you can restrict the fields the users can view or change
· Note the field list follows the privilege, NOT the table name as shown in the book
· Field lists cannot be specified for other privileges
· If you don’t specify the field list, all fields are included

	

	GRANT privileges ON tablename TO usernames
WITH GRANT OPTION;
· The WITH GRANT OPTION clause allows the users specified to pass their privileges to other users
· Only the privileges they have been given. A user who has not been given DELETE privileges cannot grant that privilege to someone else.
· When privileges are revoked, from a user, the privilege is also revoked from anyone the user granted the privilege to.

Example: Let’s say I have DELETE privileges WITH GRANT OPTION and grant DELETE privileges to you. If the DELETE privilege is revoked from me, you lose DELETE privileges too.

	

	[bookmark: restrictrecord]Restricting Record Access
In some instances, you’ll want to restrict the users’ access to records in addition to restricting column and table access.
First build a view that includes only the columns and records you want the users to be able to access
Then, grant privileges to the view.
In these notes, wherever you see tablename, you can insert viewname instead.

Example: Let’s say user THOMPSON is your representative to the New York publishers. THOMPSON should be able to see, change and delete publisher data, but only for those publishers he has responsibility for.

	

	CREATE VIEW vwNyPubs AS
SELECT * FROM tblPublishers
WHERE publisherState=’NY’;

GRANT SELECT, UPDATE, DELETE ON vwNyPubs
			TO Thompson;
	

	[bookmark: revoke]REVOKE privileges ON tablename FROM usernames;
· When you want to take privileges away from users, you use the REVOKE command.
· The REVOKE command is structured just like the GRANT command
· Can specify multiple privileges and users, but only one table
· Can use PUBLIC and ALL
· WITH GRANT OPTION doesn’t apply

· Examples:
REVOKE ALL ON tblBooks FROM PUBLIC;

REVOKE UPDATE, DELETE ON tblBooks FROM	Davis, Johnson;

	

	[bookmark: showpriv]Showing Privileges
SHOW GRANTS;
SHOW GRANTS FOR username;
	

		Page 8 of 9
image1.png
Vv 5 employees
¥ Tables
v tolemployes
» [35] Columns
» B Indexes

