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Relational Database Development
152-156

Structured Query Language (SQL)
Single Table Queries

	Notes
	Activity

	Text References
Basic Select	Pages	97 – 98, 
		100
Selecting Fields 	Pages	98 – 99	
Selecting Records (Criteria) 	Pages	100 – 107	
		110 – 112
		128
Distinct	Pages	117 – 119	
Sorting Results 	Pages	112 – 114	
Calculated Fields 	Pages	107 - 110
Calc Fields and Order By, Where 	Pages	
Formatting Results 	Pages	
Grouping 	Pages	114 – 117
		123 – 128 	
Select Statement Clause Order 	Pages	
Sub-Queries 	Pages	120 – 123 	
	
	Import Employee database in MySQL

	Access the MySQL documentation online for more information on MySQL commands and functions:
http://dev.mysql.com/doc 

	

	
[bookmark: BasicSelect]Basic Query
Select * From tblName;
· * represents all fields

	Show all fields from tblEmployees, tblPlants, tblTrips

	[bookmark: SelectFields]Selecting Specific Fields for Display
List the fields in the order desired between Select and From
Separate fields with a comma

	Show employee firstname, lastname, plantid, unionmember

	[bookmark: Criteria]Selecting Records
Add the Where keyword after the table name
Follow the keyword with a condition that records must meet to be included in the query results
Select * From tblName Where condition
SQL Conditional operators
· =, <, >, <=, >=, <>, !=
· Between…And…
Literals for character data comparison must be surrounded with ‘apostropes’ or “quotes”
Literals for date data comparison must be surrounded with ‘apostrophes’ in yyyy-mm-dd format or entered as yyyymmdd (no dashes, apostrophes optional)
Compound condition operators
· And, Or, Not, &&, ||
· [bookmark: _GoBack]Order of precedence: Not, And, Or

	Same fields, but only show Coloma (plant ID=1)










Display (all fields) employees hired between 1997 and 2001 (17)

Display employees not working in Polonia=2 (37) using <>  !=   not


	Bit fields require a little extra thought
· You can compare to the bit values 0 (false) and 1 (true)
· Alternatively, you can compare a bit field to the values False and True
· This seems more self-documenting
· The best way to use bit (yes/no true/false) values in conditions is to just use the field name (see first examples below)
· 0 = false    any non-zero = True
· Works with imported Access data where true = -1
· Examples:

Select * From tblStudent
   Where fullTime;

Select * From tblStudent
   Where Not fullTime;

Select * From tblStudent
   Where fullTime = 1;

Select * From tblStudent
   Where fullTime = True;

	
Display employees who are not union members (=0, =False, not unionmember) (8 rows)

Display employees who are union members (True)
(no match)

Display where union = -1

Import was from Access.
Use Update command to change all -1 to 1
 set sql_safe_updates=0;

Display employees who are union members (True) (42 rows)

Display females in Coloma(1) who are union 
(2 rows)

	In
· fieldname In (valuelist)
· Records that match any one of the values in valuelist are included in the query results
· Shorter than using multiple OR conditions
· Example:
· Where Color In (‘Red’, ‘White’, ‘Blue’)

	Select employees who work in Coloma(1) and Polonia(2). (25 rows)

Use Or
Use In

	
Like
· fieldname Like substring
· Like allows you to search for records where a field contains a given substring
· The substring can appear at the beginning, end or in the middle of the field.
· The Like keyword is always used with the wildcard character: %
· The wildcard character represents any character or characters (including no characters).
· The wildcard character can be placed at the beginning of the substring, end of the substring, in the middle of the string, or any combination of those locations.

	Display trips where the destination starts with “C” (59 rows)

That contains “c”

Display employees whose phone contains 333 (2 rows)

	· Examples:
· Where Name Like ‘Dav%’
Shows all names that start with Dav
· Where Name Like ‘%son’
Shows all names that end with son
· Where Name Like ‘%son%’
Shows all names that contain the letters son anywhere in the field.
· Where Name Like ‘A%son’
Shows all names that start with the letter A and end in son
· There is a second wildcard character, underscore (_) that matches any single character.
· Name Like T_m
Shows all names that are exactly 3 characters long, starting with T, ending with m (Tom, Tim, T2m).

	

	RLike
· Similar to Like but using regular expressions
Where custName RLike '^[afw].*$'
· All customers whose names start with a, f or w

	List employees whose lastnames starts with a, d or p

	Is Null, Is Not Null
· To check for empty fields use:
fieldname Is Null
Not fieldname = Null (doesn’t work, but not sytax error)

	List trips where duration is null.
Expenses is null

Expenses null and duration not null

	[bookmark: Distinct]DISTINCT
Removes duplicate values from a queries results
Select Major From tblEnroll
Where Course='152-120';
· This example will simply list the major of each student in this class. If more than one student has the same major, the major will be repeated for each student.
Select Distinct(Major) From tblEnroll
Where Course='152-120';
· This version only shows each major once.
Select Count(Distinct(CrsNumber)) 
From tblOfferings Where Semester='SP2002';
· Counts the number of courses offered in the SP2002 semester, ignoring duplicate offerings of the same course.

	

Using tblEmployee generate a list of plants

Generate a list of destinations that have been traveled to.

Generate a list of destinations each employee (ID) has traveled to (sort by city, employee)
(232 rows)
Note # of rows in trips (300)

	[bookmark: Sort]Sorting Query Results
Query results are displayed in an undefined order unless you specify otherwise.
Order By clause allows you to specify how records are to be sorted.
Order By field1[Desc][, field2] etc.
If Order By clause is used with the Where clause, the Where clause must be specified first
The Order By keywords are followed by one or more field names that specify which fields’ values should be used to sort the list.
· The first field listed is the primary sort key—the list sorted by these values first.
· The second field is the secondary sort key—if the values in the primary sort key are the same, those records are sorted by the values in this sort key.
· You can specify as many secondary sort keys are you need to break ties in the previous sort keys
By default, records are sorted in ascending order (A-Z, 0-9).  To reverse the sort order (descending), use the keyword Desc after any sort key.
Examples:
· Order By ZipCode
· Order By LName, FName
· Order By AmtOwed Desc
· Order By AmtOwed Desc, LName, FName
· Where ZipCode=’54481’ Order By LName 

	

Provide a list of trips to Chicago order by expenses.

Most expensive first.


Where expenses > 500
(8 rows)



Provide a list of cities and expenses sorted by destination then expenses, descending

	[bookmark: CalcFields]Calculated Fields
As you know, calculated fields are not typically stored in the database. Queries can be used to display calculated fields users need.
To create a calculated value, simply enter the equation for the calculated field in the field list.  Use parenthesis to improve readability.
Calculated values can also be used in comparisons (Where)
+-*/ are the only operators available. Everything else is a function.
Note, you can include the select all operator in the field list along with calculated fields:

Select *, InstCost*0.055 From tblInstall

	Calc cost per day for every trip

where cost per day > 200

order by cost per day desc




	Date Calculations
· To add a certain number of days to a date, you can use the AddDate or SubDate functions
· Examples: AddDate(CurDate(), 45)
			  SubDate(CurDate(), 30)
· To add months or years, you can use the second version of the AddDate or SubDate function.
· AddDate(datevalue, Interval value  intType)
· intType is either Day, Week, Month or Year
· value is the number of days, months or years you want to add
· datevalue is the name of the field or another date value you want to add to.
· Newer versions of MySQL even allow you to add intervals to dates by simply using the + operator
· Subtraction works too

Examples:
Select checkOutDate, 
     AddDate(checkOutDate, Interval 14 Day)
         As dueDate 
From tblLibrary;

Select CustName, 
      AddDate(startDate, Interval 18 Month)
         As subscriptionEnd 
From tblSubscribers;

Select checkOutDate, 
     checkOutDate + Interval 14 Day
         As dueDate 
From tblLibrary;

	Calc return date from every trip




Using interval



Using + (note format)



Using + interval

	Concatenating Strings
· To concatenate strings in MySQL, you must use the Concat function: neither “+” nor “&” work
· Surround literals with apostrophes
· You CAN include numeric fields in a Concat statement
· Example:

Select Concat(City, ', ', State, ' ',
       Zip) As CSZ 
From tblCustomer;

	Show a list all employees and their hire dates in one field.

	Renaming Calculated Fields
· To improve the appearance of the query results and simplify Order By clauses, you can assign field names (an alias in SQL speak) to calculated fields
· If you don’t, the formula appears as the column header
· Include the keyword As or, simply a space, after the formula, followed by the name for the field
· Example:
(See examples above)

	Set calc field name to Combined

	[bookmark: OrderWhereWithCalc]Using Calculated Fields in Order By and Where Clauses
· You CANNOT use an alias in a Where clause
· For example (using the tblCustomer example from above), you CAN NOT append the following Where clause to the SQL statement

Where CSZ Like 'Steven%'

· Instead, you’d have to repeat the formula

Where Concat(City, ', ', State, ' ',    Zip)
Like 'Steven%'

· Actually, depending on your needs, you might be able to leave out the literals (comma and spaces) and maybe even the zip code in the Where clause. They shouldn’t affect the results of the filter.

· You CAN use an alias in an Order By clause (see below)
· Can also repeat the formula though that’s much longer.
· For example (using the tblCustomer example from above), you CAN append the following Order By clause to the SQL statement

Order By CSZ

	Sort by Combined

Show only employees whose last name is alphabetically before ‘D’
(10 rows)

	[bookmark: Format]Formatting Results
Formatting is normally done by front end programs (written in a programming language) that access the database tables.
If you need to however, you can format the output of SQL queries.

	

	Formatting Decimal Values
· To format numbers, use the Format function

Format(field, decimals)

· The Format function requires two parameters:
· the field to format
· the number of decimal places to display
· All numbers include commas when appropriate
· Example:

Select Format(Avg(Salary),2) As AvgSalary
From tblEmployee;

	Calc cost per day of trip formatted 2 decimals

Sort by Cost per day

Note sorting error.
Correct in Order By

	Formatting Dates
· Use the Date_Format function to format dates
Date_Format(datefield, 'formatstring')
· Datefield is the field name or date literal to be formatted
· Formatstring will probably include some of the following:
· %d  (day)
· %m (month)
· %Y (4-digit year)
· See the Date_Format documentation for additional formatting codes
	List trip date, duration and return date of each trip. 

Format MMMM d, yyyy (see documentation)

Sort by return date desc

	Functions
Count
· Returns the number of records that would have appeared in the query results instead of the records themselves
· Select Count(*) From STUDENT
Where Major=’CIS’
· If implementation of SQL doesn’t support the *, use the primary key field name instead
Sum
· Returns the sum of a field of all the records that would have appeared instead of the records themselves
· Select Sum(Credits) From ENROLL
Where LName=’Gaul’
Avg
· Returns the average of a field from all the records.
Min
· Returns the smallest value of a field from all the records.
Max
· Returns the largest value of a field from all the records.

	Display total number of trips (to Chicago)


Display total amount of expenses (format) (to Chicago)

Display min and max duration


Display average cost per day

	[bookmark: Group]Grouping
Grouping combines records with the same value in a designated field and calculates a statistical value(s) for every group
Group By fieldname
Select LName, Sum(Credits) From ENROLL
Where Semester='SP2014'
Group By LName;
· Displays the total credits for each student enrolled in the SP2014 semester (sorted by last name).
· Results of queries that use grouping are sorted by the group field by default. You can specify an Order By clause to override this.
Having clause
· The Having clause allows you to control which groups show in the query results
· You can use an alias in a Having clause
· Select LName, Sum(Credits) As totalCredits From tblEnroll
Where Semester='SP2014'
Group By LName
Having totalCredits> 12
Order By totalCredits Desc;
· Displays the total credits for each student enrolled in the SP2014 semester (sorted by total credits descending)
· (2013) Having is compatible with format. However, formatting converts numbers to strings.  When doing a Having comparison, compare to a string.
select plantid, format(sum(salary),1) as TotalSalary from tblemployees group by plantid having totalsalary>”400,000” ;
Having vs. Where
· Where restricts records from being included in the query results
· Having restricts group statistics from being included in the query results

With Rollup
· Adding this clause to a grouped query includes the grand total (or grand average) in an additional row at the bottom of the query.
· With Rollup must follow the Group By clause
· With Rollup is not compatible with Order By
	
Calc total salary for all employees
format

For non-union employees

Calc total salary grouped by union status
if(unionmember, ‘Union’, ‘Salaried’) As Type

Calc total salary grouped by plant

Grouped by plant, then union status

Add grand totals



Calc average expenses per day for each employee

Sort descending (format)

Only include people who average over $300/day

Only include Chicago


Display the number of trips taken to each city in descending order of number trips.



	[bookmark: ClauseOrder]Clause Order
The last example under grouping above shows the correct order of clauses when many SQL clauses are included in the same statement.
These clauses must always be specified in this order—the clauses cannot be rearranged.
· For example, you cannot designate an Order By clause before the Where clause.

	

	1. Select
2. From
3. Where
4. Group by
5. With Rollup
6. Having
7. Order by (not with Rollup)

	Display name and salary of person with highest salary (using order by)

Display name and salary of union member with lowest salary.

	[bookmark: SubQueries]Sub-Queries
Sub-queries allow you to use the results of one query as a criteria for another.
For this unit, the sub-query must return a single value.
· In the next unit, sub-queries will return multiple fields and multiple rows.
Example:
Display the student(s)  with the highest GPA

Select LastName, FirstName, GPA From tblStudent
   Where GPA= (Select Max(GPA) From tblStudent);




select destination, max(avgcostperday) from
(select destination, 
sum(expenses)/sum(duration) as AvgCostPerDay from tbltrips
			group by destination) as tablename;

Note subquery in From clause.
As tablename required in subquery
	Display name and salary of person with highest salary.

Display name an salary of union member with lowest salary.

Display destination and cost per day for any trip over the average cost per day sorted by cost per day, highest to lowest.

Display the city and avg cost with the highest average cost per day.

Note: can be done using Limit 1 (end of statement) but Limit is MySQL, not standard

Select * for all employees who work in the Coloma plant using a subquery to determine plant
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