
Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 1 of 9

 Programming Logic - Beginning

152-101

Debugging Applications

Notes Activity

 Quick Links & Text References

 Debugging Concepts Pages

 Debugging Terminology Pages

 Debugging in Visual Studio Pages

 Breakpoints Pages
 Watches Pages

 Stepping Pages
 Temporary Messages Pages

 Debug.WriteLine Pages

 Debugging

 Debugging is removing logic and runtime errors from
programs

 These are the most difficult errors to uncover
 All Integrated Development Environments include

tools called debuggers that help you uncover these
errors

 These tools allow you to pause a program and then

execute statements one at a time.
 By executing statements one at a time, you can see

the order the program is executing statements
 When you are stopped, you can examine variables’

content and property values.

 Debugging Terminology

 Breakpoints
 Breakpoints allow you to designate a line (or lines) of

code where the program should stop (and enter
debugging mode).

 Allows you to skip code you know is functioning

properly and stop the program where you feel the
error is occurring

 You can also set conditional breakpoints (less used)
that only stop the program if a certain condition
exists

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 2 of 9

Notes Activity

 Watches

 Watches allow to watch the contents of selected
variables

 Most of today’s debuggers also allow you touch

(point to with mouse) a variable to see its contents
instead of (or in addition to) setting watches.

 Step Over, Step Into, Step Out
 Once a program is in debug mode you can tell the

program to execute the next statement
 If the next statement includes a method call, Step

Over allows you skip over the method’s statements

 When stepping through a program, you’ll
normally use Step Over.

 I only use Step Into to debug methods that I’ve
written (not built-in methods)

 If the next statement includes a method call, Step

Into allows you to transfer program control to the
first line in the method

 If Step Over causes an error, run the program
again and choose Step Into instead

 If you inadvertently step into a method, Step Out
allows you to return program control to the statement

that called the method.

 The remaining statements in the method are

executed, but they are not debugged (no stops)

 Displaying Temporary Messages
 Instead of using the debugger, you can also choose to

write statements that cause values or messages to
appear while the program is running

 Be sure to remove these displays or at least comment
them out once you completed debugging.

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 3 of 9

Notes Activity

 Debugging in Visual Studio

 To start Debugging, you can
 click the button on the toolbar; or
 select Debug menu, Start Debugging; or

 Press F5.
 In Visual Studio, debugging is really not much

different than running a program. You’ll enter debug
mode when the first breakpoint is reached

 Setting Breakpoints

 Click on the far left side of the line where you want
to set the break (inside the gray area)

 Or, put your cursor on the line of code you want to
stop on, click Debug, click Toggle Breakpoint.

 A red circle will appear in the gray area and the line
itself will appear with a dark red background
designating a breakpoint has been set on this line.

 When the program is executing and reaches the

breakpoint, it pauses and is in Break mode.
 The line of code you stop at will turn yellow. This is

the line of code that will be executed next. It has not

been executed yet.

 One common misperception is that the highlighted
line has already been executed. THIS IS NOT

TRUE.

 The highlighted line is the next line to be
executed

 You can remove the break point by

 clicking the red breakpoint dot or

 clicking on the line and clicking

BreakpointDelete in the popup menu

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 4 of 9

Notes Activity

 Setting Watches

 While in break mode, Visual Studio allows you to
examine variables and values stored in properties.

 Using your mouse, point to (don’t click) the variable

or property whose value you wish to see

 In the example above, the mouse pointer () is
resting on the word Text. Remember, you must be in

break mode to view variables by touching them.

 In this example, the mouse pointer is resting on the

variable named value

 Note: because this line has not yet been

executed, the variable value has a value of zero
even though txtEntry.Text has a value of “28.5”

 After you step past this line, the command will

execute and value will be assigned
 Tip: If the object you’re pointing to doesn’t display a

value, try highlighting the entire object name (drag
over with mouse) and then touch it the mouse

pointer.

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 5 of 9

Notes Activity
 Because you can see the values of variables simply

by touching them, I don’t normally set watches.

Visual Studio however, does allow you set variable
watches. I’ll describe what I feel is the easiest way to

set these watches.

 Note: you must be in Debug break mode to set

watches

 Select (drag with mouse) the variable you want

to set a watch for

 Right-click the selected item

 Choose Add Watch from the popup menu

 A Watch window will appear at the bottom of

the IDE that displays all the variables you’ve set
watches for and their current value.
▪ If the variable is out of scope, no value will

appear
▪ If the Watch window isn’t visible, click

DebugWindowsWatchWatch 1

 You can also examine variables using the Autos and

Locals windows (DebugWindows).

 Autos: displays a list of variables and objects

appearing in the current statement as well as the
3 statements before and 3 statements after the

current statement.

 Locals: displays a list of all variables in the

current procedure. However, form objects (like
txtEntry) don’t appear

 Tip: if these windows are not visible, open the

DebugWindows menu and click the window you

want to see

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 6 of 9

Notes Activity

 Stepping Through the Program

 Visual Studio provides convenient shortcut keys and
toolbar buttons for stepping through a program in
debug mode

 Step Over: F10

 Step Into: F11

 Step Out: Shift-F11
 These command are also available under the Debug

menu (note shortcut keys are listed)
 If your shortcut keys are different (F8, F9, Shift-F8),

you can switch them to our default keys

 ToolsOptions

 Expand the Environment group and then choose
Keyboard

 Change the first combo box (Apply the
following…) to (Default)

 Alternatively, you can leave them the way they

are and just remember these shortcut keys or use
the toolbar buttons

 When you step through your program, the next line

to be executed is highlighted in yellow and a yellow

arrow is displayed in the gray margin

 In the example below, the programmer stopped

the program using a breakpoint on line 22. The
programmer then stepped over (F10) line 22.
Line 24 is now the next line to be executed—it

has not been executed yet.

 Displaying Temporary Messages
 Visual Studio provides numerous ways to

temporarily display values while you are debugging
your program

 Temporarily add a label to your form and display

debug values there

 Use a Message Box to temporarily display

values
▪ See the Message Box notes

http://volkergaul.com/MSTC/Courses/Programming%20Logic%20-%20Beginning/Instructors%20Notes/Message%20Box.pdf

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 7 of 9

Notes Activity
 My favorite technique is to use the

Console.WriteLine command

 The Console.WriteLine method provides the
ability to see program values in the Output

Window, as the program is running.

 You do not need to stop the program to see the

values, you issue the following statement and
you can display values or monitor the program

flow.

 Syntax:
 Console.WriteLine (message/string)

▪ Message/string can be a single value or you
can concatenate strings with numbers.

Console.WriteLine("Value of amount is " + amount);

 If your Output window doesn’t display, use the

DebugWindows menu to display it.

 The following commands in the Console class
might also be useful

 Write (no automatic carriage return)
 WriteIf

 WriteLineIf

Debug.WriteLine Example

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 8 of 9

Notes Activity
 In the example above, the programmer set a breakpoint

at line 22. When the program stopped, the programmer

stepped through the program (F10) until line 28 was
highlighted.

 The Console.WriteLine methods on lines 25 and 26
caused the messages to display in the Output Window

 The program was put into debug mode to help with the

explanation of the Console.WriteLine commands. The
programmer could remove the breakpoint on line 22

and run the program again. Even without the
breakpoints, without entering debug mode, the program
will still display the messages in the Output Window

 The Console.WriteLine method only displays the

output in the Output Window. The Output Window is
only available when using the IDE. Executable

versions of programs ignore the Console.WriteLine

commands.

 Executable versions of your programs are the ones

you deliver to users (customers). These
executable versions of programs have no way to

display the Console.WriteLine messages.

 Once you’ve finished debugging your program, you

can delete the Console.WriteLine commands

 Personally, I comment them out. Then, if I need to

debug my program in future, I can easily reinstate
them (remove commenting)

 Optionally, because the executable version doesn’t
display the messages anyway, you could simply
leave the Console.WriteLine methods in your code

▪ I still prefer to comment them out
♦ Too many Console.WriteLine commands

can clutter your code, making it hard to
maintain

♦ Too many Console.WriteLine commands

can cause a flood of messages in the
Output Window, making it hard to find

the messages applicable to your current
debug problem.

♦ At any time, you can right-click the

Output Window and choose Clear All or

click the Clear All toolbar button

Instructor’s Notes Programming Logic - Beginning Debugging Applications

 Debugging: Page 9 of 9

Notes Activity
 Advanced programs often create log files instead of (or

in addition to) console messages.

 These log files are text files written to by the
program as it is running.

 If the program crashes while the user is using it,
the log files can be analyzed by programmers to

determine what caused the program crash.

 Log files can become quite large and users have

the ability to delete them (unless they are well
hidden).

